Vítejte!

Matematický korespondenční seminář PraSe (PRAžský SEminář) je celoroční soutěž pro středo­školáky a vůbec pro každého, kdo se zajímá o mate­matiku.

MKS rovněž pořádá další soutěže a také soustředění pro nejlepší řešitele. Více...

Kromě aktuálních informací o semináři zde najdete archiv úloh a mnoho dalších matematických textů.

Jsi tu nový?

Pojď mezi nás a řeš PraSe! Vyřeš některé z úloh z aktuální série, pojeď na super soustředění a vyhraj skvělé ceny!

Více na stránkách informace a pravidla.

Nebuďte líní, řešte PraSe!

Co je nového?rss-icon

image

30. dubna 2016

Na stránkách Náboje se objevily fotky z této velkolepé akce. Děkujeme všem zúčastněným, ještě jednou blahopřejeme vítězům a těšíme se na příště!

image

28. dubna 2016

Na webu máme vzorová řešení 3. jarní série a 3. seriálové série.

image

18. dubna 2016

V chatu se právě objevily Nápovědy k 3. jární a 3. seriálové serii.

image

14. dubna 2016

Na stránkách se objevily fotky ze sobotního výletu. Těšíme se na příště!

image

30. března 2016

Máme tu vzorová řešení druhé jarní série.

Aktuálně na chatu

Marián Poppr | org | 18. 4. 2016 21:01:54

Ahoj ahoj,
je tu rozšířené vydání Hintů k 3.jarní serii s Tipy k závěrečnému dílu seriálu. Pro bližší informace račte shlédnout níže.

1. úloha+ skrytý text

vezmi špetku jedné kružnice a tři díly rovnoběžných přímek..

2. úloha+ skrytý text
vrchol C je vrcholem nějakého pravoúhlého trojúhelníka+ skrytý text
Použij obvodové úhly v tětivovém čtyřúhelníku

3. úloha+ skrytý text
označme P jako průsečík AX a BY, stačilo by nám kdyby úhel APB měl stále stejně velkou velikost+ skrytý text
Jaké vnitřní úhly má trojúhelník AYP?

4. úloha+ skrytý text
ukaž, že čtyřúhelník MPOC je rovnoběžník+ skrytý text
Čtyřúhelník POMN je tětivový, v jakém vztahu jsou úhly trojúhelníku NOC?

5. úloha+ skrytý text
pokud promítneme úsečku délky jedna na sousedící strany čtverce, jak velké budou dohromady tyto promítnuté díly?+ skrytý text
Jaký je součet obrazů všech promítnutých úseček?

6. úloha+ skrytý text
mějme bod M na CB, tak že DC=CM a AB=BM, jaké jsou pak trojúhelníky DCE, MCE a ABE, MBE a z toho se už dopočítej součtu úhlů FDE a FAE+ skrytý text
DCE, MCE a ABE, MBE jsou shodné, proč?+ skrytý text
Všimni si, že E je střed kružnice opsané v trojúhelníku DMA

7. úloha+ skrytý text
stačí ukázat, že úhel QDP je menší než QBP, jakou velikost má první jmenovaný?+ skrytý text
90°
+ skrytý text
Všimni si, že body P a Q jsou středy kružnic připsaných nějakých trojúhelníků, najdi je a zbytek doúhli

8. úloha+ skrytý text
2016 průsečíků jde+ skrytý text
i. Vezměme 504 rovnostranných trojúhelníků a umístíme na každý umístěte 4 kružnice, tak aby tvořili dohromady 4 průsečíky
+ skrytý text
Pro ukázání, že méně už nejde, přiřaď každé kružnici skóre 1 a rovnoměrně ho rozděl mezi průsečíky. Za skóre průsečíku pak měj součet přiřazených skóre ze všech kružnic průsečíkem procházejících. Ukaž, že každý průsečík má skóre maximálně 1+ skrytý text
Když průsečíkem prochází n kružnic, tak kolik průsečíků alespoň leží na daných kružnicích
+ skrytý text
Závěrem si všimni, v jakém vztahu jsou součty skóre kružnic a průsečíků.


1. úloha+ skrytý text
Vytvoř si vícerozměrnou funkci z w->x, která k danému přirozenému číslu přiřadí všechny čísla z X větší nebo rovná danému přirozenému číslu+ skrytý text
Axiom výběru
+ skrytý text
Poté vytvoř požadovanou rekurentní posloupnost

2. úloha+ skrytý text
Použij Cauchyovu rovnici a rozděl R+ na ty, pro která ti nějaká funkce dá záporné hodnoty a na ty co ti dá nezáporné

3. úloha+ skrytý text
Použij transfinitní rekurzy na kardinál c (|R×R×R|=c) a pomocí principu dobrého uspořádání
uspořádej body v prostoru xa kružnic ka, tak že xa E ka+ skrytý text
Pokud bodem xa NEprochází žádná kružnice Ka={kB, B<a}, ukaž že jím lze proložit rovinu kde zatím neleží žádná kružnice+ skrytý text
Kružnic jsme zatím určili méně než kontinuum a vzhledem k nějaké ose (třeba z) kartézské soustavy souřadnic se středem xa, svírají úhel z [0,pi), který je kontinuum
+ skrytý text
Rozmysli si, že ve zvolené rovině leží z každé kružnice Ka nejvýše 2 body, kolik je tedy bodů celkem?+ skrytý text
|2a|<c
+ skrytý text
Nyní ukaž, že lze najít hledanou kružnici ka v dané rovině+ skrytý text
Vybíráme z kontinua možných kružnic a |4a|<c

Číst dál…

Anketa

Vektor je

písmenko, které má nad sebou šipečku doprava
rozmazlený fracek z Despicable me
síla, zrychlení, a tak podobně
rozdíl dvou bodů
dynamicky alokované pole v C++
třeba reálné číslo
nesprávně vyslovené mužské jméno

(autor: Mirek)

Výsledky a archiv

Kontakt

email mks (zavináč) mff.cuni.cz
pošta Korespondenční seminář
KAM MFF UK
Malostranské náměstí 25
118 00   Praha 1

Organizátoři

mff

Matematický korespondenční seminář je organizovaný studenty Matematicko-fyzikální fakulty UK pod záštitou Informatického ústavu UK a Oddělení pro vnější vztahy a propagaci UK.

Partneři

pix