9th IMC 2002 problems

------
A1.  A standard parabola has an equation of the form y = x2 + ax + b. Three standard parabolas have vertices V1, V2, V3 and intersect pairwise at the points A1, A2, A3. P → r(P) is reflection in the x-axis. Show that the standard parabolas with vertices r(A1), r(A2), r(A3) intersect pairwise at r(V1), r(V2), r(V3).
A2.  Is there a function f: R → R with continuous derivative such that f(x) > 0 and f '(x) = f(f(x)) for all x?
A3.  Put an = 1/nCk, bn = 1/2n-k for k = 1, 2, ... , n (where nCk is the binomial coefficient). Show that ∑ (ai - bi)/i = 0.
A4.  Let f: [a,b] → [a,b] be a continuous function. For p ∈ [a,b] define p0 = p, pn+1 = f(pn). The set Tp = {p0, p1, p2, ... } is closed. Show that it has only finitely many elements.
A5.  Does there exist a monotonic function f: [0,1] → [0,1] such that f(x) = k has uncountably many solutions for each k ∈ [0,1]? Does there exist such a function which also has a continuous derivative?
A6.  For a real n x n matrix M define |M| = sup x≠0 |Mx|/|x| (where |x| is the standard Euclidean norm for x ∈ Rn). If the matrix A satisfies |Ak - A-k| ≤ 1/(2002k) for all positive integers k, show that |Ak| ≤ 2002 for all k.
B1.  The matrix A = (aij) is defined by aij = 2 if i=j, (-1)|i-j| if i≠j. Find det A.
B2.  200 students did an exam with 6 questions. Every question was correctly answered by at least 120 students. Show that there must be two students such that every question was correctly answered by at least one of them.
B3.  Show that (∑k=0 kn/k!)(∑k=0 (-1)k kn/k!) is an integer.
B4.  OABC is a tetrahedron. ∠BOC = α, ∠COA = β, ∠AOB = γ. The angle between the faces OAB and OAC is σ, and the angle between faces OAB and OBC is τ. Show that γ > β cos σ + α cos τ.
B5.  A is a complex n x n matrix for n > 1. A' is the complex conjugate of A (each element is the complex conjugate of the corresponding element of A). Show that AA' = 1 iff A = S(S')-1 for some S.
B6.  f: Rn → R is convex. ∇f exists at every point and for some L > 0 we have |∇f(x1) - ∇f(x2)| ≤ L|x1 - x2| for all x1, x2. Show that |∇f(x1) - ∇f(x2)|2 ≤ L (∇f(x1) - ∇f(x2)).(x1 - x2) (the dot product).

To avoid possible copyright problems, I have changed the wording, but not the substance, of the problems.

IMC home
 
© John Scholes
jscholes@kalva.demon.co.uk
1 Dec 2003