IMO 2003

------
 
 
Problem B2

Given n > 2 and reals x1 <= x2 <= ... <= xn, show that (∑i,j |xi - xj| )2 ≤ (2/3) (n2 - 1) ∑i,j (xi - xj)2. Show that we have equality iff the sequence is an arithmetic progression.

 

Solution

Thanks to Li Yi

Notice first that if we restrict the sums to i < j, then they are halved. The lhs sum is squared and the rhs sum is not, so the the desired inequality with sums restricted to i < j has (1/3) on the rhs instead of (2/3).

Consider the sum of all |xi - xj| with i < j. x1 occurs in (n-1) terms with a negative sign. x2 occurs in one term with a positive sign and (n-2) terms with a negative sign, and so on. So we get -(n-1)x1 - (n-3)x2 - (n-5)x3 - ... + (n-1)xn = ∑ (2i-1-n)xi.

We can now apply Cauchy-Schwartz. The square of this sum is just ∑ xi2 ∑ (2i-1-n)2.

Looking at the other side of the desired inequality, we see immediately that it is n ∑ xi2 - (∑ xi)2. We would like to get rid of the second term, but that is easy because if we add h to every xi the sums in the desired inequality are unaffected (since they use only differences of xi), so we can choose h so that ∑ xi is zero. Thus we are home if we can show that ∑ (2i-1-n)2 ≤ n(n2 - 1)/3. That is easy: lhs = 4 ∑ i2 - 4(n+1) ∑ i + n(n+1)2 = (2/3)n(n+1)(2n+1) - 2n(n+1) + n(n+1)2 = (1/3)n(n+1)(2(2n+1) - 6 + 3(n+1) ) = (1/3)n(n2 - 1) = rhs. That establishes the required inequality.

We have equality iff we have equality at the Cauchy-Schwartz step and hence iff xi is proportional to (2i-1-n). That implies that xi+1 - xi is constant. So equality implies that the sequence is an AP. But if the sequence is an AP with difference d (so xi+1 = xi + d) and we take x1 = -(d/2)(n-1), then we get xi = (d/2)(2i-1-n) and ∑ xi = 0, so we have equality.

 


 

44th IMO 2003

© John Scholes
jscholes@kalva.demon.co.uk
25 Jul 2003
Last corrected/updated 25 Jul 2003