### 42nd Putnam 1981

**Problem A2**

We can label the squares of an 8 x 8 chess board from from 1 to 64 in 64! different ways. For each way we find D, the largest difference between the labels of two squares which are adjacent (orthogonally or diagonally). What is the smallest possible D?

**Solution**

Answer: 9.

Consider the straightforward ordering 1, 2, 3, 4, 5, 6, 7, 8 for the first row, 9, 10, ... , 16 for the second row, ... , 57, 58, ... , 64 for the last row. Adjacent squares in the same row have difference 1, adjacent squares in different rows have difference 7, 8 or 9. So for this ordering D = 9.

If we take any two squares on a chessboard there is a path from one to the other of length at most 7, where each step of the path is to an adjacent square [if the squares are at opposite corners of an m x n rectangle with m >= n, then take m - 1 steps, n - 1 of them diagonal and the rest along the longest side.] So there is a path of at most 7 steps from 1 to 64. At least one step of that path must have a difference of at least 9 (since 7 x 9 = 64 - 1). So we always have D ≥ 9. Hence the minimal D is 9.

4th Putnam 1941

© John Scholes

jscholes@kalva.demon.co.uk

8 Oct 1999