Russian 2000

------
 
 
Problem 6

We have -1 < x1 < x2 < ... < xn < 1 and y1 < y2 < ... < yn such that x1 + x2 + ... + xn = x113 + x213 + ... + xn13. Show that x113y1 + x213y2 + ... + xn13yn < x1y1 + ... + xnyn.

 

Solution

Note that if xi > 0, then xi13 < xi and if xi < 0, then xi13 > xi. So not all the xi can be non-negative and not all can be non-positive. Hence x1 < 0 < xn.

Put zi = xi - xi13. Then z1 < z2 < z3 < ... < zn. So if zi + zi+1 + ... + zn ≤ 0 for i > 1, then zi must be negative and hence all of z1, z2, ... , zi-1 must be negative and hence z1 + z2 + ... + zn < 0. Contradiction. hence zi + zi+1 + ... + zn > 0 for i > 1.

Now we have ∑ xiyi - ∑ xiyi13 = ∑ yizi = y1(z1 + z2 + ... + zn) + (y2 - y1)(z2 + ... + zn) + (y3 - y2)(z3 + ... + zn) + ... + (yn - yn-1)zn > 0.

 


 

Russian 2000

© John Scholes
jscholes@kalva.demon.co.uk
4 March 2004
Last corrected/updated 4 Mar 04