A3. The function f(x, y) is defined for all real numbers x, y. It satisfies f(x,0) = ax (where a is a nonzero constant) and if (c, d) and (h, k) are distinct points such that f(c, d) = f(h, k), then f(x, y) is constant on the line through (c, d) and (h, k). Show that for any real b, the set of points such that f(x, y) = b is a straight line and that all such lines are parallel. Show that f(x, y) = ax + by, for some constant b.
